Q.P. Code: 16CE122

(AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations Feb-2021 GEOTECHNICAL ENGINEERING-I

I ECHNICAL ENGINEERIN

(Civil Engineering)

Time: 3 hours

Max. Marks: 60

7M

R16

(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I

1	a	Draw the structure of Kaolinite, Illite and Montmorillonite clay mineral groups and	d 5M
		brief the salient point.	
	h	A sample of clay soil of volume 1×10^{-3} m ³ and weight 17.62 N after being dried out	

b A sample of clay soil of volume 1×10⁻³ m³ and weight 17.62 N, after being dried out in an oven had a weight of 13.68 N. If the specific gravity of the particle was 2.69 7M find void ratio, saturated unit Weight, dry unit weight and water content.

)R

- 2 a Define (i) Plasticity Index (ii) Shrinkage Index (iii) Liquidity Index
 - b A saturated soil sample has a water content of 25% and unit weight of 20 KN/m³.
 Determine the Specific gravity of the solid particles, dry unit weight and void ratio.

UNIT-II

- 3 a Define permeability & Darcy's law. How do you determine the permeability of a clayey soil in the Laboratory?6M
 - **b** Estimate the quantity of flow of water through a soil mass in a 300 sec period when a constant Head of 1m is maintained. The length of the sample is 150 mm and the cross sectional area is 100×100 mm. The coefficient of permeability of the soil sample is 1×10^{-1} mm/s.

OR

- 4 a What is flow net? Describe its properties and applications. How to construct a flow 6M net?
 - b Write an expression for determining permeability of soil by falling head permeameter and Explain the terms
 6M

UNIT-III

5 a The soil from a borrow pit is at a bulk density of 17.50 kN/m3 and a water content of 12.3%. It is Desired to construct an embankment with a compacted unit weight of 19.82 kN/m3 at a water Content of 17%.Determine the quantity of soil to be excavated from the barrow pit and the amount of water to be added for every 100 m3 of compacted soil in the embankment.
b What are the factors that affect compaction?
5 M

OR

- 6 a What do you understand by 'Pressure bulb'? Illustrate with sketches
 6 M
 b A concentrated load of 1500 kN acts vertically at the ground surface. Determine the
 - vertical stress at A point which is at at a depth of 5.0 and a radial distance of 2.5 m.

UNIT-IV

7 a Define the terms (i) Compression Index (ii) coefficient of permeability
 5M
 b Obtain the partial differential equation for the one-dimensional consolidation as Terzaghi,
 5M

Page 1 of 2

Q.P. Code: 16CE122

8 a The settlement analysis (based on the assumption of the clay layer draining from top and bottom Surfaces) for a proposed structure shows 3 cm of settlement in four years and an ultimate Settlement of 10 cm. However, detailed sub-surface investigation reveals that there will be no Drainage at the bottom. For this situation, determine the ultimate settlement and the time required For 2.5 cm settlement.

K10

8M

4M

12M

6M

b Listing the various assumptions

UNIT-V

9 a A triaxial compression test on a cohesive sample cylindrical in shape yields the following effective Stresses:

Major Principal stress ... 8 MN/m²

Minor principal stress ... 2 MN/m²

Angle of inclination of rupture plane is 60° to the horizontal. Present the above data, by means of a Mohr's circle of stress diagram. Find the cohesion and angle of internal friction.

OR

- **10 a** Briefly explain how you conduct the triaxial compression test
 - b A vane, 10.8 cm long, 7.2 cm in diameter, was pressed into a soft clay at the bottom of a bore hole. Torque was applied and the value at failure was 45 Nm. Find the shear strength of the clay on a Horizontal plane.

*** END ***